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1. Introduction

Nonholonomic meclianical systems are governed by constraints of motion that are

nonintegrable differential expressions of the form

Y^ aj. d(ii + ajt dt = 0, j = l,2,-—m (1)

i=i

where, the <?'s represent the generalized coordinates, t represents time, and the a's are,

in general functions of the q's and t. As a result of the nonintegrable nature of these

differential constraints, it is not possible to obtain functions of the form

0i(gi.02»- •,qn,t) = o, j = l,2,--m (2)

that will enable us to eliminate some of the dependent variables. Naturally, nonholonomic

systems require more coordinates for their description than there are degrees of freedom

in the system.

An interesting feature of nonholonomic mechanical systems is their ability to access

a configuration space of dimension higher than the number of it's degrees of freedom. A

simple example is that of a disk rolling without slipping on a flat surface. The configu-

ration space of the disk rolling on the x-y plane, shown in Fig.l, is described by the four

coordinates (x,y,0,a), but the degrees of freedom of the system is only two because of the

following two nonholonomic constraints

dx - r s\n a dO —

dy -r cos a dO — (3)

Inspite of having only two degrees of freedom, it is quite intuitive that the rolling disk can

arrive at any configuration (x,y,0,a) from any other, through proper path planning. Such

a property is common to nonholonomic mechanical systems and can be attributed to the

nonintegrable nature of their differential constraints.

For the rolling disk, our intuition can be strengthened if we consider the following

example. Suppose, it is desired that the disk in Fig.l change its coordinates from (x,y, 6, a)

to {xd ,yd,6,cx). Then a feasible trajectory would be the path segments AO and OC. The

disk would roll forward from A to O, and then roll backward from O to C. The individual

path segments AO and OC should have equal lengths such that comes back to its initial

value at the end of the path. Furthermore, the straight lines AB and CD should be tangent

to the path segments AO and OC respectively, at the points A and C. This will ensure that

the net change of the variable a will also be zero over the complete path. Such a path can

always be planned and this leads us to believe that the dependent variables x and y can

indeed be changed arbitrarily through cyclic motion of the independent variables and a.
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Therefore to converge all the configuration variables of the disk from one set of values to

another, we could first converge the independent variables from their initial values to their

desired values without being concerned about the evolution of the dependent variables, and

then use cyclic motion of the independent variables to converge the dependent variables

to their desired values.

In this paper we will develop an algorithm for nonholonomic motion planning - one

that will enable us to converge all the configuration variables of a nonholonomic system

from one set of values to another. This algorithm will follow a two step procedure - first

converge the independent variables, and then use cyclic motion of the independent variables

to converge the dependent variables.

The nonholonomic motion planning problem has been the focus of attention of various

researchers in the recent past. Specifically, researchers have looked into the problems of

mobile robot navigation [1], [5], [6], [10], parking a front-wheel drive car or a car with

multiple trailers [9], [10], dextrous manipulation with robotic fingers [2], attitude control

of a satellite using two rotors instead of gas-jets, reconfiguration of a space manipulator

or a space structure using only internal motion [12], etc. The multibody car system was

studied in [10] and it was concluded that it is a well controllable system. This result was

obtained by first constructing the control Lie algebra. The controllability was concluded

by showing that the rank of the control Lie algebra is equal to the dimension of the state

space, at every point in the state space. Such an analysis only provides sufficient conditions

for the controllability and is useful for simple nonholonomic systems. It cannot be used

to verify the controllability of a complex system like a 6-DOF space robot. Assuming

the existence of a feasible trajectory connecting an initial and some desired values of the

generalized coordinates, the nonholonomic motion planning of space robots was discussed

in [12]. The nonholonomy of a space robot is attributed to the conservation of its angular

momentum. A space robot consisting of a six joint manipulator mounted on a space

vehicle was described by nine generalized coordinates consisting of six joint angles of the

manipulator and the three Euler angles of orientation of the space vehicle. By directly

controlling only the joints of the manipulator, it was shown that it is possible to converge

all the nine state variables to their desired values. The trajectory was planned using a

Lyapunov function and by adopting a bi-directional approach.

An algorithm for steering a general class of nonholonomic systems was developed in

[11] using sinusoids. This algorithm was applied for the motion planning of a front wheel

drive cart, and reconfiguration of a hopping robot in flight phase. In this algorithm, the

independent variables were first steered to their desired configuration ignoring the evolution

of the dependent variables. Consequently, the dependent variables were converged to their

desired values using closed trajectories of the independent variables. Such an approach

was proposed earlier [15], for the motion planning of a space manipulator, where the cyclic

motion of the joints of the space manipulator was used to change the orientation of the

whole system.



In this paper, we will discuss the motion planning of nonholonomic systems using

an algorithm in which the prerogative is to find a closed trajectory of the independent

variables that converge the dependent variables to their desired values. In our approach,

we use Stokes's theorem to reduce this problem into finding a surface area such that the

dependent variables converge to their desired values while the independent variables travel

along the boundary of this surface area. The main advantage is the global nature of our

planning algorithm, unlike the local path planning approach based on Lyapunov functions

[12]. Due to the global nature of the algorithm, questions pertaining to the reachability of

the system can be readily answered, problems related to singularity can be tackled, and

feasible trajectories can be easily planned even in the presence of additional constraints.

For a nonholonomic system like a space robot, these additional constraints may appear in

the form of joint limits or obstacles in the workspace. Our algorithm additionally provides

us with insight into trajectories that produce repeatable motion. Repeatability in the

motion may be simply a desirable property as in the case of space robots, or may even be

used for singularity avoidance as in the case of a rolling disk.

This paper is organized as follows. In section 2 we discuss the mathematical prelim-

inaries and the properties of nonholonomic systems. In section 3, we discuss some of the

issues related to the motion planning of nonholonomic systems. In section 4, we present

our algorithm for the nonholonomic motion planning through examples. Specifically, we

discuss the motion planning of a planar space robot and a disk rolling without slipping

on a flat surface. The different salient features of our algorithm are apparent in these two

examples.

2. Mathematical preliminaries

2.1 Line and surface integrals: Stokes's theorem

In this section we recall Stokes's [8] theorem used for the tranformation of line integrals

into surface integrals, and vice verca. The material discussed in this section will serve as

a mathematical tool for the trajectory planning of nonholonomic systems.

Theorem 1: Stokes's Theorem Let 5 be a piecewise smooth oriented surface* in space

and let the boundary of S be a piecewise smooth closed curve C. Let v(x,y,z) be a

continuous vector function which has continuous first partial derivatives in a domain in

space which contains S. Then

/
J
nT (V x v)dA = J> vids (4)

where, n is the unit vector normal to the surface S on that side of S which is taken as the

positive side. The positive direction along C is then defined as the direction along which

* If a surface S has a unique normal whose direction depends continuously on the points

of S, then 5' is called a smooth surface. If S is not smooth but can be subdivided into

finitely many smooth portions, then it is called a piecewise smooth surface.



an observer, traveling on the positive side of S, would proceed in keeping the enclosed area

to his left, (see Fig. 2 (a)). vt is the component of v in the direction of the tangent vector

of C.

If the direction cosines of the unit vector n normal to the surface S are a, j3 t
and 7,

and if v = v x i + v2j + v^k, then Stokes's theorem can be written as

f f \{ dv3 du'A , ( dv \
duz\ a , f dv 'i

dv i\ ja

J js [U" - & )
cosa +

{ 87
" & )

cos/3 +
( & ~

!>; )
™->\ dA

— <i (vi dx + v2 dy + v3 dz) (5)

If we restrict ourselves to the x-y plane, then Stokes's theorem simplifies to the form

//(^-^f)**-£ (" ,* + *"*) <6)

whicli is essentially a statement of Green's theorem [8]. For the above equation the positive

direction of travel along the closed curve C is shown in Fig. 2 (b). This directly followed

from Eq.(5) where we substituted (a,/?, 7) = (ii/2,ir/2,Q). We may change the direction of

the closed curve C in Eq.(6) by using (a, £,7) = (n/2, 7r/2
.
7r ) m Eq.(5). This will lead to a

change in sign of the surface integral in Eq.(G).

Another important theorem that will serve as an important tool for our analysis deals

with the path independence of line integrals. This theorem is formally stated next [8]

Theorem 2: Let v - v x i + v 2 j +v3 k, and let vu v 2) and w3 be continuous functions of

x, y, and z in a domain D of space. Then the line integral

L
(v\ dx + v2 dy + v-sdz) (7)

<c

is independent of path if and only if the differential form under the integral sign in exact

in D, or equivalently the integral is zero for every simple closed path in D, or equivalently

V x v - 0, everywhere in D.

From the above theorem we see that the necessary and sufficient condition for the

exactness of the differential form under the integral sign in Eq.(7) is

(s)
dv2 dv$ dv$ dv 1

dv\ dv2

dz dy
'

dx dz dy dx

2.2 Properties of nonholonomic systems

In this section we discuss some of the important properties of nonholonomic systems.

These properties will aid us to develop the motion planning schemes in the section 4.

In section 1 we mentioned that nonholonomic constraints are nonintegrable expressions

of the form as in Eq.(l) that cannot be simplified into expressions of the form as in Eq.(2).

To further our discussion, we consider again the example of the disk rolling without slipping

on a flat surface whose first constraint equation is



dx — r sin udO = (9)

The above constraint is not an exact differential since there exists no function <£(x, a,0)

such that Eq.(9) can be reduced to the form

dx da dO

Furthermore, Eq.(9) cannot be multiplied by an integrating factor to yield an exact dif-

ferential. Hence it is not integrable*. It can be shown that the necessary and sufficient

condition for the integrability of the differential equation

v j dx -f V2 dy + v$ dz —

is that

Vl
dv2

~dz~

dv2

dx
(10)

dy J \ dx dz J \ dy

Applying this criterion to Eq.(9) we confirm that the expression is not integrable. In the

more general case, the necessary and sufficient condition that the differential constraint in

n variables (Ince, 1956)

v\ dx\ + V2 dx2 + • + vn dxn =

is integrable, is that the set of equations

dv^

dx)

dux

dx
+ v (*± dvu

dx x
+ vx

dvu

dx„

dv.

dx,,
-

(A,/i,f = l,2,"-,n)

are satisfied simultaneously, and identically.

(H)

The nonholonomic property of a dynamical system can also be ascertained from the

noninvolutive property of the distribution that spans the tangent space of the system, using

Probenius's theorem. If X
x e Rn

, i = 1,2, ••• ,m denote the vector fields of the system, then

the distribution A = span{Xx,X 2 , ,

X

m ) is involutive if and only if A is closed under

Lie bracket operations. Otherwise, the system is noninvolutive or nonholonomic. In the

case of the rolling disk,

r sin q

v A I Y A | r cos a
I

|

,A 2 =
j

[A" lfX2 ]
= ( -Q--

J
Xi - f -7—-

j
X2 = (r cosq -rsina 0)

J

(12)

* A differential expression is integrable if it is an exact differential or can be converted

into an exact differential after multiplying with an integrating factor.

6



Clearly, Xu X2) and their Lie bracket [Xi,X2 ] are linearly independent. This reconfirms

that the rolling disk is a noninvolutive or a nonholonomic system.

The discussion in this section so far enables us to ascertain the nonholonomy of a

dynamical system from its differential constraints. We now investigate the manifestation

of these nonholonomic constraints.

If a dynamical system is described by n generalized coordinates, and m holonomic

constraints of the form as in Eq.(2), the motion of the system is always confined to a

manifold or surface of dimension (n - m), which is equal to the number of degrees of

freedom of the system. Then, if we specify the (n - m) independent variables, it is possible

to uniquely determine the remaining m dependent variables. This is not true when the

constraints are nonholonomic or nonintegrable expressions of the form as in Eq.(l). The

kinematic effect of a nonholonomic constraint is to constrain the direction of the allowable

motions at any given point in the configuration space. But this does not reduce the number

of dimensions in the configuration space, nor does it limit the variety of configurations

available to the system. As a direct consequence, given the values of the independent

variables, it is not possible to uniquely specify the values of the dependent variables of a

nonholonomic system. When the independent variables take one set of values from another,

the change in the dependent variables depend upon the path taken by the independent

variables. Quite naturally, if the independent variables travel along a closed path, the

values of the dependent variables at the beginning and end of the path are usually not the

same.

The above mentioned property of a nonholonomic system is better understood by the

use of Theorem 2 on line integrals. Comparing Eq.(8) (conditions for exactness) to Eq.(lO)

(conditions for integrability), or directly from the definition of integrability, we know that

exactness implies integrability*. Therefore it follows that a nonintegrable expression is not

exact. Consider now a nonholonomic system where one of the dependent variables is p and

it is constrained by the differential expression dp = v^ dx + v2 dy -\-v-sdz , where x, y, and z

are the independent variables. vu v2) and v-s are continuous functions of x, y, and z. Since

the system is nonholonomic or nonintegrable, the differential form v
x
dx + v2 dy + v3 dz is not

exact. Therefore it follows from Theorem 2 that the change of p is path dependent, and

this change is not zero for every closed path. This suggests the following.

1

.

It is possible to change the coordinates of the dependent variable p of the nonholonomic

system using appropriate closed trajectories of the independent variables, and

2. There may exist some closed paths for which the path dependent integral in Eq.(7)

will be zero for the nonholonomic system.

On the basis of statement 1 discussed above, we now assume that there exists some closed

* Integrability however does not imply exactness because an integrable differential ex-

pression could have become exact only after it was multiplied by some multiplicating

factor.



trajectory C of the independent variables x, y, and z that produce a change in the dependent

variable p by some desired amount Ap. If (x ,y ,zo) be any point on this closed trajectory

and if the initial configuration of the system is (x0> 2A),zo,po), tnen ^eT tne system moves

along C once, its configuration will be (x ,yo,2o,po + Ap) (refer to Fig. 3 (a)). If the closed

curve C was traversed in the opposite direction, then the final configuration of the system

would have been (x
, yQ , z , p - Ap). Now consider the initial configuration of the system to

be (x', y', z',po), such that (x',y'
t
z') does not lie on C. Let P be any path segment connecting

the point (x',y',z') and any point (x0) yo, 20) on the closed curve C. Let 6p denote the change

in the dependent variable p, as x, y, and z move along the path segment P from (x',y\z')

to (xo,2A),2o)- Then, if the system moves from the initial configuration {x' ,y' ,z' ,p ) to the

closed curve C along P, then moves once along the closed curve C, and finally retraces the

path P backwards, the configuration of the system at the end of the path (see Fig.3 (b)) will

be (x'.j/, z\po + Ap). This is true because the surface integral of the closed curve beginning

and ending at the point (x',y',z') is equal to the surface integral of the closed curve C.

From this discussion it follows that the closed curve C that can bring about the desired

change in the dependent variable can lie anywhere in the space defined by the independent

generalized coordinates - it does not have to pass through the initial configuration of the

system. Of course, it would be simpler to plan a closed path passing through the initial

configuration of the system but then such a path may not be feasible due to singularity

problems. We will discuss the singularity problem in the particular situation of a rolling

disk, in section 4.

In regards to statement 2 discussed above, we would just like to mention that closed

trajectories of the independent variables that result in closed trajectories of the dependent

variables (repeatable motion) will be of importance to us in the context of nonholonomic

motion planning. Repeatability in the motion may be simply a desirable property as in

the case of space robots, or may even be used for singularity avoidance as in the case of a

rolling disk. In section 4 we will investigate into the repeatability of the motion of a space

robot and of a rolling disk.

3. Issues related to Nonholonomic Motion Planning

The configuration space of a nonholonomic system is described by the set of its in-

dependent and the dependent variables. The task of nonholonomic motion planning is

to generate trajectories of the independent variables that will take the system from its

current configuration to some desired configuration. In the context of the rolling disk, the

motion planning would therefore refer to the generation of the and a trajectories that

will take the system from some initial configuration (xit yi,Oit ai) to some final configuration

The question that naturally arises in the context of motion planning is related to the

reachability* of the system. In the case of the rolling disk, we know that any configuration

of the system is reachable from any other. This follows from our discussion in section 1. For

A number of researchers like [10], prefer to use the term controllability to reachability,



a multibody car system (a car with n trailers), a mathematical proof of the controllability

(reachability) was provided in [1]. For nonholonomic systems in general, the reachability

can be ascertained by constructing the control Lie algebra and then using the controlla-

bility theorem for nonlinear systems [3j. The control Lie algebra is the smallest involutive

distribution containing the span of the vector fields of the system and closed under Lie

bracket operations. If the rank of this Lie algebra is full at some configuration C of the

system, then there exists a neighborhood N of C whose points represent configurations

reachable by the system from C along admissible paths. Clearly, this condition is a local

condition. If this condition holds good at every point in the configuration space, then any

configuration of the system is reachable from any other using admissible paths.

The controllability (reachability) of a number of simple nonholonomic systems has

been verified using the approach discussed above. However, for complicated systems like

a 6DOF free-flying space robot [12], this approach is not useful. In the next section we

will generate admissible trajectories for simple nonholonomic systems using an algorithm

based on Stokes's Theorem. For the two nonholonomic systems that we have considered

in section 4, we find that reachability can be easily concluded directly from our algorithm.

An important feature of motion planning algorithms should be their ability to plan

admissible trajectories amidst additional constraints. In the case of robot manipulators

these additional constraints may appear in the form of obstacles in the workspace or limits

imposed on the angular displacement of the joints. In the case of the rolling disk admissible

trajectories may have to be planned by avoiding obstacles in the x-y plane. Collision-free

trajectories or trajectories amidst additional constraints have been planned using artificial

potential functions [7], [13]. In comparison to these approaches, the algorithm discussed in

this paper has a global attribute. This feature will be evident in the next section through

examples.

While discussing the properties of nonholonomic systems in section 2, we realized

that closed trajectories of the independent variables more often result in a change in the

dependent variables. This will provide a basis for our motion planning algorithm, where

closed trajectories of the independent variables will be suitably planned in order to produce

a desired change in the dependent variables. In particular situations we may however be

interested in finding closed trajectories of the independent variables that also produce

closed trajectories of the dependent variables (repeatable motion). Consider the example

of a planar robot in space with two links mounted in a space vehicle, as shown in Fig. 4. In

this case, the orientation of the space vehicle o is the dependent variable while the joint

variables 6 X and 92 are the independent variables. If this robot is expected to perform a

repeatitive task in space, we would expect all the variables o , 0\, and 2 to move along

closed trajectories. In the next section, we illustrate repeatability in the case of a two-link

space robot, and for a rolling disk. In the case of the rolling disk repeatable motion leads

to the generation of singularity free trajectories.

and adhere to the terminology used in [14].



4. Nonholonomic motion planning using Stokes's theorem

4.1 Example 1: A planar space robot

In this section we illustrate our algorithm for nonholonomic motion planning using

Stokes's theorem, through the example of a 2-DOF planar space manipulator. We consider

a planar free-flying space manipulator consisting of two links mounted on a space vehicle,

as shown in Fig.4. Such a system can be described by five coordinates: io, yo, and O

representing the position of the center of mass and the orientation of the space vehicle,

and 6i and 2 representing the joint angles of the manipulator. The variables x and y can

be eliminated by using the holonomic constraints due to linear momentum conservation.

The 2-DOF system is then described by three generalized coordinates 0,, i = 0,1,2, and

one nonholonomic constraint due to the conservation of angular momentum given by the

relation

do = ^(a0
x
+bd2

)
(13)

where,

A = (rm, + m2 j
i
l\ + -m\ll - (m + -m 1 )m 2 /i/2 cos02 - M ( I + (-mj + m 2 )l\ + -m 2 l\

a = -A - M I

A - /• ]
,2 ,

1 , , _.n \ 1 2,2 1 ,1fc=M (

/

2 + -m 2 /2 + ^rn 2 /!/2 cos02 j
- -m2/2

- -m2(-mi -h m2 )/!/ 2 cos02 (14)

and where, m0) mi and m 2 are the masses of the space vehicle and the two links, /
,
I\ and

h are the moments of inertia of the space vehicle and the two links about their center of

masses, l\ and i2 are the length of the two links, and M = (m -i-m 1 -f-m2 ) and / = (/o+^i + /2)-

The configuration of the space manipulator can be described by (0o,0i,02)- Then

the path planning problem is to find suitable trajectories for X and 2 that will change

the current configuration of the space manipulator to some desired configuration. This

immediately raises the question pertaining to the reachability of the system - is it possible

to plan trajectories that will take the space manipulator from any initial configuration to

any final configuration. The answer to this question is yes, and can be obtained directly

from our path planning algorithm, discussed below.

Let the arbitrary initial and desired configurations of the space manipulator be denoted

hy (0oi,0i,,02«) and (0O/, lf , 2j) respectively. We first converge the joint variables U and 2 ,

(the independent variables) to their desired values 0i/ and 2/ respectively. In this process,

let the orientation of the space vehicle (the dependent variable) drift from O , to some value

80d . The task is now to plan a cyclic motion for the joints of the manipulator such that the

orientation of the space vehicle changes from Od to O/ while the joint angles come back to

10



their desired configuration. The associated reachability problem can be solved if we can

show that it is possible to change the orientation O by an arbitrary amount using cyclic

motion of the joints, at any joint configuration X and 2 . For cyclic motion of the joints,

the change in O is represented as

f d0 = I ^(adOi+bdO,) (15)

where, A, a, and b have been defined by Eq.(14), and C in Eq.(15) is a closed curve in the

r 02 plane that we will suitably choose. Using Green's theorem given by Eq.(6), the above

equation is simplified to

A '
] v2;2

, * 2i2 h4 (1 ,

/I.
, \,2 ,

* ,2A = (rmj + m 2 yi\ + -m$l$ - M ( / + (-m, + m2 )/f + jm^

£? = -(m + -mi)m 2/i/2 (I 7
)

where, the expressions for a and b were substituted from Eq.(14), and 5 is the surface in

the 0j-02 plane confined within the closed curve C. Let the desired change in O be denoted

as O . Then the path planning problem reduces to the proper selection of the area S in the

r 2 plane such that the following equality is satisfied

If we choose a rectangular path in the 0\-02 plane, such that the sides of this rectangle

are parallel to the 0i and 2 axes, then the above identity reduces to

(0iu-0n)
1 1

= * (19)A+ B cos 2u A + D cos 2 *

where, 0k and 0i u denote the lower and upper extremities of 0i in the rectangular path

while 2i and 2u denote the same for 2 .

The reachability of the system can be proven by showing that there exists a surface

5 such that the equality in Eq.(18) can be satisfied for any arbitrary value of k. The

initial values of t and 2 does not necessarily have to lie on the boundary of this surface

S. This follows from our discussion in section 2.2. We first note that if the identity in

Eq.(18) can be satisfied for some value of k by traveling along the boundary of the area S

in the positive direction, then the same identity can be satisfied for -A; by simply traveling

along the boundary in the negative direction. Furthermore, if the identity can be satisfied

for some value of k by traveling once along the boundary of S, then the identity can be

11



satisfied for the value nk, n — 1,2, • • •, by traveling n times along the boundary in the same

direction. Clearly, the reachability problem reduces to showing that the identity in Eq.(18)

can be satisfied for any value of k e (0,e), where e is some positive small number. For a

rectangular area 5, this is easy to prove. We can always choose the values of 62 i and 2u in

Eq.(19) such that the quantity a defined as

Q —
(

! !
)

\ A + B cos 2u A + D cos U )

is not equal to zero. Then it is quite obvious that (0lu - U ) can be chosen to be equal to

k/a such that the identity in Eq.(19) can be satisfied for any value of k e [0, e).

We now illustrate our path planning algorithm with the help of a simple example. We
consider a space manipulator (refer to Fig.4) of material alluminum, whose kinematic and

dynamic parameters are given below in SI units:

Kinematic and Dynamic parameters

Mass Inertia Length

Vehicle 27.440 1.520

Link-1 5.380 0.115 l x
= 0.50

Link-2 2.640 0.028 l
x
= 0.35

Let the initial configuration of the system be {0oXi Xx ,62x ) = (0.0, 15.0, 15.0) degrees, and the

final configuration be {0Of,0 lf ,02J ) = (-20.0,45.0,0.0) degrees. We first converge 6
X
and 2

from their current values to their desired values using the straight line trajectory OA, as

shown in Figs. 5 and 6. In this process, the orientation of the space vehicle drifts from

0.0 degrees to o <i
= -12.87 degrees, as shown in Fig. 6. Therefore, = (0o/ - Od ) = -7.13

degrees, or -0.1244 radians. We now plan a cyclic motion of the joints such that after

three complete cycles of the joint motion the orientation of the space vehicle changes

by the desired amount. Then, for each cycle, the required change of orientation would be

-0.1244/3.0 = -0.0415 radians. Using this value for O , the value of k in Eq.(18) is computed

to be -7.696 x 10~ 4
. With the complete liberty to choose the closed path in the joint space,

we choose the simple directed path given by the rectangle ABCD in Fig.5. The closed

curve is chosen such that the intermediate configuration of the system - point A, lies on

this closed curve. The surface integral in Eq.(18) then simply reduces to

J JABCD
d
\A+Bcos02 )

d° x (<?1/ ° u) \A + Bcos02J A + Bcos02l )

= (
x -^{aTW^

i

cos 7 A + B cos

where, A and 7 have to be chosen appropriately. We choose A = 125.0 degrees i.e. 2.181

radians. Then using the values of A = -89.848 and B = -13.92 from Eq.(17) and the table

above, we obtain the value of 7 = 0.596 radians or 53.36 degrees. For this choice of A and 7,

the evolution of all the configuration variables for the path OABCD are shown in Fig.6.
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We would like to mention a few points at this juncture. For the same set of values of

7 and A, there are infinite paths that will produce the same change in the orientation o .

As for example, the directed paths OABCDA (taken from Fig. 5) and OADMNA in Fig.7

will produce the same change in the orientation o . In both these cases the intermediate

configuration (0od,0i/,02/) - point A, lie on the closed curves ADCD and ADMN. This only

simplifies the motion planning problem but is not a necessary condition, as we have already

discussed in section 2.2. Area ADMN can be concieved as a translation of the area ADCD
to the left along BA. In fact, the translation of the area ABCD by any amount along the

line BA will result in feasible closed trajectories. This follows directly from the expression

for the surface integral in Eq.(20). We see that the surface integral in Eq.(20) depends

upon the difference of the values of Q Xj and XXi but not individually on X/ and Xl . There

are also infinite other combinations of A and 7 values that we can choose to satisfy Eq.(20).

And there is even more flexibility when we can suitably choose the number of cycles of

joint motion that will produce the desired change in the orientation O . As for example,

in the particular situation discussed above, the directed path AXYZ can bring about the

same change in O in four cycles of the joint motion that the paths ABCD and ADMN can

bring about in three cycles. The path AXYZ was obtained by choosing 7 = 75.0 degrees

which led to the value of A = 76.084 degrees.

We next consider the practical situation where the trajectory of the system may have

to be planned subject to the joint limits \0 X
\

< 120 degrees. Then for the above example, the

trajectories ADMN and AXYZ in Fig.7 would be feasible whereas the trajectory ABCD
would not be feasible. It is quite clear that our path planning algorithm provides us with

the flexibility in choosing trajectories that can satisfy additional constraints, like joint

limits in the case of space robots.

We complete this section with a discussion on repeatable motions of the space robot.

In particular situations, a space robot may be expected to perform a repeatative task

in space. In such a situation the end-effector of the robot as well as the configuration

variables of the robot will all have to move along closed trajectories. If the joints of the

robot, shown in Fig. 4, move along closed trajectories, the dependent variables x and y

will always move along closed trajectories because of the holonomic nature of the linear

momentum constraints. The dependent variable O will however not move along a closed

trajectory in the general case. If the net change in O were also to be zero as the joints

moved along a closed rectangular path, then from Eq.(19), the necessary conditions that

would have to be satisfied are & Xu - 6 U , or cos02u = cos02 ,
(assuming a rectangular path in

the
x
-02 plane). The first condition leads us to the trivial case where the first joint of the

robot will have to be kept fixed. The second condition tells us that repeatability is assured

for 2li + 2i
= 2n7r, n = 0, ±1, ±2, • • •. In the previous example that we considered, we found

that we had a significant amount of flexibility in choosing the closed trajectories. Though

the condition 2u -f 2l = 2nn, n = 0,±l,±2, • • •, will restrict our choices, we should still be

able to choose from a variety of paths that will produce repeatable motion.
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4.2 Example 2: A disk rolling without slipping on a flat surface

We revisit the classical example of the disk rolling without slipping on a fiat surface

and this time we apply our algorithm for its nonholonomic path planning. The configu-

ration space of the rolling disk, as discussed in section 1, is described by (x,y,9,a). The

independent variables of the system are 9 and a, and x and y are the dependent variables

constrained by the expressions given in Eq.(3). While planning a path from an initial

configuration of the disk (x
l ,yl ,Ol ,a l ) to some desired configuration (xf,y/,0j,af ), we first

converge the independent variables to their desired values using some simple trajectory

without being much concerned about the evolution of the dependent variables. This tra-

jectory may however be important so as to avoid a singularity problem, which we shall

discuss soon. At the end of this trajectory (path segment OP in Fig. 8), the dependent

variables are assumed to drift to values xd and yd . Now the task is to plan a closed path

for the independent variables and a such that the dependent variables x and y change

their values from xd and yd to xj and y/ respectively. Let C be such a closed path in the

0-a plane. Then the change of the variables x and y are represented as

(if — xd ) —
<f>

r sin adO = / / —r cos a dO da (21

)

(Vf ~ Vd) — <P T cos add — r sin a dO da (22)

where, we applied Green's theorem, given by Eq.(6), to convert the line integral into the

surface integral. Therefore, S is the surface in the 0-a plane within the closed curve C. We
choose the closed curve C as the directed rectangular path PQRSP as shown in Fig. 8. For

this rectangular path PQRSP
}
Eqs.(21) and (22) yield

{xs -xd ) = -2arsin(b/2) cos(a, + fc/2) (23)

(yf -yd)=2ar sin(ty2) sin(a
/ + 6/2) (24)

Assuming b / 2n7r, n — ±1, ±2, • • •, we solve for a and b as follows

b = 2[-a/ + arctan 2 (j// -yd ,xd - x/)]

,

< b < 4n (25)

B = «*>-*? +
% -»rr, a> (26)

2rsin(fc/2)

As the disk would move along the sides QR and SP of the rectangular path PQRSP in

Fig. 8, the value of a would have to change in the absence of rolling. This may not be simple

to achieve in practice, as for example in the case of an unicyclist. We therefore modify

our rectangular path to the path PQMNP in Fig. 8 where a would change only when the

disk is rolling. It is easy to show that surface the integral in Eq.(21), as in Eq.(22), will

have the same value when the closed curve C is the rectangle PQRSP or the parallelopiped

PQMNP.
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Equation (26) has a singularity for

aict&n2 (yj -yd, Xd - x/) — a/ (27)

and there are three simple ways to overcome this singularity problem. One way would be

to arrive from the initial configuration to a different intermediate configuration i.e. at a

different set of values xd and yd , that would not satisfy Eq.(27). This would require us

to choose a different trajectory from O to P (see Fig. 8). The second alternative would be

to set an intermediate goal x'
f)

y'
f
and first move to this configuration from xd , yd using

cyclic motion of the independent variables. Then the remaining task would be to plan a

second cyclic motion of the independent variables such that the dependent variables would

converge to x f , yf from their values x'
f ,

y'.. The smart alternative would be to follow the

three step procedure explained below and diagrammatically shown in Fig. 9.

1 Change the present configuration variables f and a} to some other values 0'
f
and a'

f

using any trajectory OR, such that a'
f ^ af , at R. Ignore the evolution of the variables

x and y that take the new values x'd ,

y'
d at R from their values xd ,yd at O.

2 Construct any closed path C passing through R, that will change the x and y variables

by amounts (x f -xd ) and (yj - yd ) respectively. If we choose a rectangular path, or the

equivalent parallelogram path, then the dimensions of this path would be computed

from Eqs.(24) and (25) only by replacing a f in Eq.(24) by a'
f

. Move along this closed

trajectory once to come back to R where = 0'
f
and q = a'

f
.

3 Retrace backwards the trajectory OR to move from R to O. At O the configuration of

the system would be (xf,yf,0f,a f ).

The above procedure for singularity avoidance follows from our discussion in section

2.2. This procedure is also recommended for avoiding points close to singular points.

At points close to the singularity, trajectories tend to become infeasible due to the large

magnitude of a, as evident from Eq.(26).

We are now convinced that any configuration of the rolling disk (xj,yj,0Jt aj) can be

reachable from any initial configuration (xlt ylt Olt a,) by using the motion planning algorithm

discussed in this section. Though in certain situations, there may be a singularity problem,

this problem can be easily overcome. The singularity that we may encounter is however

not a physical singularity, it is rather an algorithmic singularity. The singularity problem

can be completely removed by adopting a slightly different algorithm. This algorithm, to

be discussed shortly, uses the repeatable motion of one of the dependent variables. This

algorithm will further strengthen our conviction on the reachability issue of the rolling

disk.

We illustrate our path planning algorithm with the help of a simple example. In this

example we come close to the singularity and we tactfully avoid it using the algorithm

discussed above. Consider a disk of radius r = 0.25m which is at its current configuration

(z,,2/,,0
l ,at ) = (0.0,0.0,0.0,0.0) metres, degrees. Suppose the desired configuration of this

disk is (xf,yf,0/,af) = (-0.4,1.0,180.0,22.5) metres, degrees. We first converge the vari-

15



ables and a to their desired values using the simple straight line path OZ, as shown in

Fig. 10. The coordinates of x and y at the end of this path will be 0.1522 and 0.7654 metres

respectively (obtained through numerical simulation). Using Eqs.(25) and (26), we solve

for a and b as b — 0.01808 and a — 132.72 radians respectively. Clearly, we are close to a

singular configuration. In the light of the discussion on singularity avoidance, we adopt

the following measure. We have the complete liberty to choose 0'
}
and a'

f
(point R in

Fig.9), with the only restriction that a'
f ^ af . We choose (6'

f
,a'

f ) = (0,,a.) = (0.0,0.0). And

we change 6} and af to 0, and a, by retracing the path OZ backwards (see Fig. 10). We
therefore come back to the initial configuration where (x,y,9,a) = (x x ,y l ,9x ,a l ). Now we

substitute the value of a, in place of af in Eq.(25) and solve for a and 6 from Eqs.(25)

and (26). We obtain 6 = 0.8034 radians or 46.03 degrees and a = 3.068 radians or 175.78

degrees. In Fig. 10, the path OPQRO is the closed path constructed with these values of a

and b. Due to the motion along this closed path the change in the x and y coordinates will

be (xf
- xd ) = (-0.4 - 0.1522) = -0.5522 metre and (yf

- yd ) = (1.0 - 0.7654) = 0.2346 metre

respectively. Therefore the coordinates at O of the dependent variables after the motion

along the closed path will be x = -0.5522 and y = 0.2346 metres. We finally trace the

straight line path from O to Z. Due to this motion the change in the x and y coordinates

will be (xd - x.) = (0.1522 - 0.0) = 0.1522 metre and (yd - y x ) = (0.7654 - 0.0) = 0.7654 metre

respectively. Therefore, the coordinates at Z will be (-0.5522 + 0.1522) = -0.4 metre and

(0.2346 + 0.7654) = 1.0 metre respectively. The coordinates of the independent variables at Z

are obviously 9 = 180.0 degrees and a = 22.5 degrees. Looking back at the entire motion, we

realize that the initial path from O to Z and back to O is redundant. Therefore, the path

that will be sufficient for converging all the variables will be OPQROZ, as shown in Fig. 10.

The closed path OPQRO is chosen to be a parallelogram instead of a rectangle for reasons

we have already discussed earlier in this section. The complete path OPQROZ is quite

different from paths that are generated in the absence of singularity. In the absence of

singularity, the complete path consists of an initial path segment followed by a closed loop

in the 0-a plane. In the particular example that we have considered, we had a singularity

and the complete path consisted of a closed loop path followed by a simple path segment.

The simulation results of this particular example have been shown in Fig. 11. The points

O, P, Q, R
}
and Z in Fig. 11 correspond to the same points in Fig. 10.

The singularity problem discussed above arises due to the particular nature of our

algorithm where we converge both the dependent variables x and y simultaneously using

closed trajectories of the independent variables. We have seen that this is not at all

a serious problem. However, this problem can be completely eliminated by adopting a

slightly different algorithm. The idea behind this algorithm is to use repeatable motion of

one of the dependent variables. This algorithm is discussed next.

In our singularity free algorithm, we will first converge the independent variables 9

and a from their initial values (0,,a,) to their desired values (9f,af ). Let us suppose that

the dependent variables x and y change their coordinates from x, and yx to xd and yd

respectively. We will next converge x to its desired value x/ using closed trajectories of the
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independent variables without being concerned about the evolution of the y coordinate.

Specifically, we will use Eq.(23), where we will have the liberty to choose a set of values a

and b. Let us suppose that the dependent variable y drift from its previous coordinate yd

to y'
d in this process. We will finally converge y from its present coordinate y'

d to its desired

value yf using closed trajectories of the independent variables that will also produce a

closed trajectory of the dependent variable x, i.e. a repeatable motion in the x coordinate.

From Eqs.(23) and (24) it follows that the correct choice of the variables a and b for this

repeatable motion should be

Ay
b=-2a,±nn, a = - -

, Q / ^±(2n+l)7r/2, n = 0,l,2,--- (28)
2 r cos aj

where Ay = (,y/-y'd ), and b will be chosen such that 6 > 0. The magnitude of a can however

be positive or negative. We will use the absolute value of a to construct the parallelogram

path in the 0-a plane. If the sign of a is obtained negative from Eq.(28), then the use of

the positive value will bring about a change in the y coordinate by an amount -Ay instead

of Ay. This problem can be simply solved by changing the direction of travel along the

closed path. This idea has been appropriately demonstrated in the next simulation.

As an alternative, we could also converge the dependent variable y before we converge

the dependent variable x. In that case, after the initial motion from the configuration

(zi,2/i,0i,a,) to the configuration {xd ,yd ,0/,a/), we would suitably choose a and b in Eq.(24)

such that y converges from yd to yj. At this stage we will not be concerned about the

evolution of the x coordinate, which will probably drift from xd to x'd . Finally, we will

change the variable x by an amount Ax = (xf - x'd ) using closed trajectories of and a

that will also produce a closed trajectory of y, i.e. a repeatable motion in the y coordinate.

From Eqs.(23) and (24) it then follows that the correct choice of the variables a and b

would be

Ax
b = 2(mr -a,), o=- :

, a, / ±r»7r, n = 0,l,2,-- (29)
2r sin aj

where, b will be chosen such that it is a positive number, and the absolute value of a will

be used to construct the trajectory. The direction of travel along the closed trajectory

should be along the positive or the negative direction depending upon whether the sign of

a comes out to be positive or negative in Eq.(29).

From the two alternatives we conclude that if the final value of a is such that af
=

±(2n+ l)7r/2, for n = 0,1,2,- -, then we will first converge y and then converge x. If

aj = ±n7r, for n = 0,1,2,- •-, then we will first converge x and then converge y. For

af ^ nn/2, for n = 0, 1, 2, • • •, either of the two alternatives mentioned above can be adopted.

To illustrate the efficacy of this singularity free algorithm, we consider the same ex-

ample we have considered before. The initial configuration of the disk of radius r = 0.25

metres is (x,,7/,,0,,a,) = (0.0,0.0,0.0,0.0) metres, degrees, and its desired configuration is

(x f ,yf ,6f,af) = (-0.4,1.0,180.0,22.5) metres, degrees. We first converge the independent

variables using a straight line path (path segment OP in Figs. 12 and 13) in the 0-a
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plane. At the end of this path the configuration of the system is found to be (x,y,6,a) =

(0.1522,0.7654, 180.0,22.5) metres and degrees respectively. Since a f
= 22.5 degrees ^ rm/2,

for n = 0, 1,2, • • -, therefore we can choose to first converge x or y. We choose to converge x

first. In Eq.(23), we substitute x/ = -0.4 metres, xd = 0.1522 metres, and af
= 22.5 degrees.

Choosing b - 60 degrees or 1.047 radians, we obtain a = 3.628 radians or 207.87 degrees. For

these values of a and b, the closed path is given by PQRSP in Fig. 12. After moving along

this path, the y variable drifts from yd — 0.7654 metres to y'
d
— 1.485 metres, as shown in

Fig. 13, whereas the x coordinate converges to its desired value. Now the task is to generate

a closed path in the 6-a plane that will cause a repeatable motion in x but will converge y

to yf = 1.0 metre. Using Eq.(28) we arrive at b = 135 degrees, or 2.356 radians and a = -1.05

radians, or 60.15 degrees. For these particular values of a and £>, the closed trajectory is

given by PXYZP in Fig. 12. Due to the negative value of a the direction of this closed

path is opposite to our usual convention. The entire motion of the system can be obtained

by eliminating the redundant path segment SPS. Therefore the complete motion of the

system would be OPQRSXYZP, as shown in both Figs. 12 and 13.

5. Conclusion

A motion planning algorithm for nonholonomic mechanical systems was presented in

this paper. In this algorithm, the independent variables of the system were first converged

to their desired values. Subsequently, the dependent variables were converged using closed

trajectories of the independent variables. The task of motion planning was simplified using

Stokes's theorem. This reduced the task of finding closed trajectories of the independent

variables into that of finding a surface area in the space of the independent variables such

that the dependent variables converged to their desired values while the independent vari-

ables traversed along the boundary of this surface area. The motion planning algorithm

was found to have certain global attributes due to which questions pertaining to the reach-

ability of the system could be easily answered and the motion could be planned amidst

additional constraints. The salient features of the algorithm was aptly illustrated through

the examples of a planar space robot and a disk rolling without slipping on a flat surface.
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Figure 1. A disk rolling on a flat surface is described by four configuration

variables: x, y, 0, a. The disk has however two degrees of freedom due to

the presence of two nonholonomic constraints.
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Figure 2 (a). Positive direction of travel along the closed curve C in Stokes Theorem
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Figure 2 (b). Positive direction of travel along the closed curve C in Green's Theorem
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Figure 3 (a). The closed trajectory C in the independent variables x, y, and z

produces a change in the dependent variable p by an amount Ap. The initial

configuration of the system - (1), lies on this closed trajectory.
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Figure 3 (b). The closed trajectory C in the independent variables x, y, and z

produces a change in the dependent variable p by an amount Ap. The initial

configuration of the system - (1), does not lie on this closed trajectory.
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Figure 4. A two-link manipulator mounted on a space vehicle is described

by three generalized coordinates: O , 8P 6
2

. The center of mass of the

space vehicle has the coordinates x
, y .
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Figure 6. Evolution of all the configuration variables of the space robot

with time, for the simulation discussed in section 4.1. Points O, A, B, C
and D in this figure correspond to the same points in Fig. 5.
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Figure 7. Directed paths ABCD, and ADMN both change the orientation of the

space vehicle by equal amounts. The closed path AXYZ changes the orientation

of the vehicle in four cycles by the same amount that the closed paths ABCD and

ADMN can bring about in three cycles.
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Figure 9. A diagrammatic representation of the singularity avoidance scheme
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Figure 10. The path OPQROZ is the outcome of the successful implementation

of the singularity avoidance scheme for the rolling disk, discussed in section 4.2.
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Figure 11. Path OPQROZ shows the motion of the disk rolling on the

x-y plane, for the simulation discussed in section 4.2 on the singularity

avoidance scheme. Fig. 10 shows the motion of the disk on the G-a plane.
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Figure 12. The path OPQRSXYZP was planned using the singularity

free algorithm with a repeatable motion in the x coordinate
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Figure 13. Path OPQRSXYZP shows the motion of the disk rolling on the

x-y plane. This motion was planned using the singularity-free algorithm,

discussed in section 4.2, with a repeatable motion in the x coordinate. The
corresponding motion of the disk in the 9-a planeisshowninFig.il.
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